Python API
bioclip.TreeOfLifeClassifier(**kwargs)
Bases: BaseClassifier
A classifier for predicting taxonomic ranks for images.
See BaseClassifier
for details on **kwargs
.
Source code in src/bioclip/predict.py
505 506 507 508 509 510 511 512 513 |
|
predict(images, rank, min_prob=1e-09, k=5, batch_size=10)
Predicts probabilities for supplied taxa rank for given images using the Tree of Life embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images
|
List[str] | str | List[Image]
|
A list of image file paths, a single image file path, or a list of PIL Image objects. |
required |
rank
|
Rank
|
The rank at which to make predictions (e.g., species, genus). |
required |
min_prob
|
float
|
The minimum probability threshold for predictions. |
1e-09
|
k
|
int
|
The number of top predictions to return. |
5
|
batch_size
|
int
|
The number of images to process in a batch. |
10
|
Returns:
Type | Description |
---|---|
dict[str, dict[str, float]]
|
List[dict]: A list of dicts with keys "file_name", taxon ranks, "common_name", and "score". |
Source code in src/bioclip/predict.py
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
|
get_label_data()
Retrieves label data for the tree of life embeddings as a pandas DataFrame.
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A DataFrame containing label data for TOL embeddings. |
Source code in src/bioclip/predict.py
529 530 531 532 533 534 535 536 537 538 539 540 |
|
create_taxa_filter(rank, user_values)
Creates a filter for taxa based on the specified rank and user-provided values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rank
|
Rank
|
The taxonomic rank to filter by. |
required |
user_values
|
List[str]
|
A list of user-provided values to filter the taxa. |
required |
Returns:
Type | Description |
---|---|
List[bool]
|
List[bool]: A list of boolean values indicating whether each entry in the label data matches any of the user-provided values. |
Raises:
Type | Description |
---|---|
ValueError
|
If any of the user-provided values are not found in the label data for the specified taxonomic rank. |
Source code in src/bioclip/predict.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
apply_filter(keep_labels_ary)
Filters the TOL embeddings based on the provided boolean array. See create_taxa_filter()
for an easy way to create this parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keep_labels_ary
|
List[bool]
|
A list of boolean values indicating which TOL embeddings to keep. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the length of keep_labels_ary does not match the expected length. |
Source code in src/bioclip/predict.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
|
bioclip.Rank
Rank for the Tree of Life classification.
KINGDOM
PHYLUM
CLASS
ORDER
FAMILY
GENUS
SPECIES
bioclip.CustomLabelsClassifier(cls_ary, **kwargs)
Bases: BaseClassifier
A classifier that predicts from a list of custom labels for images.
Initializes the classifier with the given class array and additional keyword arguments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls_ary
|
List[str]
|
A list of class names as strings. |
required |
Source code in src/bioclip/predict.py
361 362 363 364 365 366 367 368 369 370 371 |
|
predict(images, k=None, batch_size=10)
Predicts the probabilities for the given images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images
|
List[str] | str | List[Image]
|
A list of image file paths, a single image file path, or a list of PIL Image objects. |
required |
k
|
int
|
The number of top probabilities to return. If not specified or if greater than the number of classes, all probabilities are returned. |
None
|
batch_size
|
int
|
The number of images to process in a batch. |
10
|
Returns:
Type | Description |
---|---|
dict[str, float]
|
List[dict]: A list of dicts with keys "file_name" and the custom class labels. |
Source code in src/bioclip/predict.py
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
|
bioclip.CustomLabelsBinningClassifier(cls_to_bin, **kwargs)
Bases: CustomLabelsClassifier
A classifier that creates predictions for images based on custom labels, groups the labels, and calculates probabilities for each group.
Initializes the class with a dictionary mapping class labels to binary values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls_to_bin
|
dict
|
A dictionary where keys are class labels and values are binary values. |
required |
**kwargs
|
Additional keyword arguments passed to the superclass initializer. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If any value in |
Source code in src/bioclip/predict.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
bioclip.predict.BaseClassifier(model_str=BIOCLIP_MODEL_STR, pretrained_str=None, device='cpu')
Bases: Module
Initializes the prediction model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_str
|
str
|
The string identifier for the model to be used (defaults to BIOCLIP_MODEL_STR). |
BIOCLIP_MODEL_STR
|
pretrained_str
|
str
|
The string identifier for the pretrained model to be loaded. |
None
|
device
|
Union[str, device]
|
The device on which the model will be run. |
'cpu'
|
Source code in src/bioclip/predict.py
200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
forward(x)
Given an input tensor representing multiple images, return probabilities for each class for each image. Args: x (torch.Tensor): Input tensor representing the multiple images. Returns: torch.Tensor: Softmax probabilities of the logits for each class for each image.
Source code in src/bioclip/predict.py
303 304 305 306 307 308 309 310 311 312 313 |
|
get_cached_datafile(filename)
Downloads a datafile from the Hugging Face hub and caches it locally. Args: filename (str): The name of the file to download from the datafile repository. Returns: str: The local path to the downloaded file.
Source code in src/bioclip/predict.py
325 326 327 328 329 330 331 332 333 |
|
get_tol_repo_id()
Returns the repository ID for the TreeOfLife datafile based on the model string. Raises: ValueError: If the model string is not supported. Returns: str: The Hugging Face repository ID for the TreeOfLife embeddings.
Source code in src/bioclip/predict.py
315 316 317 318 319 320 321 322 323 |
|
get_txt_emb()
Retrieves TreeOfLife text embeddings for the current model from the associated Hugging Face dataset repo. Returns: torch.Tensor: A tensor containing the text embeddings for the tree of life.
Source code in src/bioclip/predict.py
335 336 337 338 339 340 341 342 |
|
get_txt_names()
Retrieves TreeOfLife text names for the current model from the associated Hugging Face dataset repo. Returns: List[List[str]]: A list of lists, where each inner list contains names corresponding to the text embeddings.
Source code in src/bioclip/predict.py
344 345 346 347 348 349 350 351 352 353 |
|
bioclip.recorder
Records predictions made by a classifier and saves the output to a file.
attach_prediction_recorder(classifier, **top_level_settings)
Attach a PredictionRecorder to the classifier instance that will record metadata and subsequent predictions. Call save_recorded_predictions to save the recorded predictions to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classifier
|
object
|
The classifier (such as TreeOfLifeClassifier) instance to attach the recorder to. |
required |
**top_level_settings
|
Additional settings to be recorded. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PredictionRecorder |
An instance of PredictionRecorder attached to the classifier. |
Source code in src/bioclip/recorder.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
save_recorded_predictions(classifier, path, include_command_line=True)
Saves recorded predictions from the classifier to a file. Before calling this function, ensure that the classifier has a recorder attached using attach_prediction_recorder. Saves the recorder's data to the specified file path in either JSON or plain text format. If the file extension is '.json', the data is serialized as JSON. Otherwise, the data is appended in a human-readable text format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classifier
|
object
|
The classifier instance (such as TreeOfLifeClassifier) with recorded predictions. |
required |
path
|
str
|
The file path where the report will be saved. |
required |
include_command_line
|
bool
|
When True includes the python command line in the log file. |
True
|
Raises:
Type | Description |
---|---|
ValueError
|
If the output path extension is .json and the file already exists. |
Source code in src/bioclip/recorder.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|